Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Rui Ren, Shu-Sheng Zhang,* Qiang Li, Xue-Mei Li and Xiu-Yan Song

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.057$
$w R$ factor $=0.160$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

4-Cyano-3-fluorophenyl (2E)-3-(4-heptyloxy-3-methoxyphenyl)acrylate

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FNO}_{4}$, the two benzene rings are almost perpendicular to one another, with a dihedral angle of 87.7 (1) ${ }^{\circ}$. Molecules are linked into two-dimensional layers by non-classical intermolecular hydrogen-bonding interactions. The packing is further stabilized by $\pi-\pi$ interactions.

Comment

We have reported the structure of 4-cyano-3-fluorophenyl 4'-isobutoxybiphenyl-4-carboxylate, (II) (Ren et al., 2005). In our ongoing research into liquid-crystal materials containing fluorine, the title compound, (I), was obtained and its structure is reported here.

(I)

Bond lengths and angles in (I) are within normal ranges (Allen et al., 1987), and the values in the 4-cyano-3-fluorophenyl group are comparable with those in the related structure 4-cyano-3-fluorophenyl 4'-isobutoxybiphenyl-4carboxylate (Ren et al., 2005). The 4-heptyloxy-3-methoxyphenyl group, excluding atom C24, is essentially coplanar with the acrylate fragment. This combined unit is almost perpendicular to the 4-cyano-3-fluorophenyl group, with a dihedral angle of $87.7(1)^{\circ}$ between the two benzene rings. The $\mathrm{C} 8-$ $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ torsion angle is $178.9(2)^{\circ}$, indicating a trans configuration of the double bond. The F atom shows disorder over two positions, with site occupancies of 0.638 (4) and 0.362 (4).

There is one intramolecular hydrogen-bond interaction, $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1$, forming a five-membered ring, which contributes to the planarity of the acrylate group. In the crystal structure, molecules are linked into two-dimensional

Figure 1
The structure of the compound (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The fluorine is disordered over two positions. Both components are shown.

Received 14 October 2005 Accepted 7 December 2005 Online 10 December 2005

Figure 2
A view, down the b axis, of the packing. Hydrogen bonds are indicated by dashed lines.
layers by intermolecular $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 2^{\mathrm{i}}$ and $\mathrm{C} 17-\mathrm{H} 17 B \cdots \mathrm{~F}^{\mathrm{ii}}$ interactions [symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $x-1$, $y, 1+z$] (Fig. 2 and Table 2). The packing is further stabilized by $\pi-\pi$ interactions between the benzene (C2-C7) rings, the distance between the centroids, $\mathrm{Cg} \ldots \mathrm{Cg} g^{\text {iii }}$ [symmetry code: (iii) $2-x,-1-y,-z]$, being $3.713 \AA$.

Experimental

To a solution of 3-(4-hydroxy-3-methoxyphenyl)acrylic acid (1.94 g , 0.01 mol) in $17.0 \% \mathrm{KOH}$ solution (10 ml) was added dropwise 1 bromoheptane $(0.54 \mathrm{~g}, 0.03 \mathrm{~mol})$ in ethanol $(30 \mathrm{ml})$. The mixture was heated under reflux for 24 h and extra KOH solution was added to remove the by-products. The mixture was then acidified to give a white precipitate, which was filtered and recrystallized from ethanol, giving a white precipitate, identified as 4-hydroxy-3-methoxyphenylacrylic acid. This compound (1.46 g) and DCC (1,3-dicyclohexylcarbodiimide, 0.6 g) were dissolved in THF (20 ml), and a solution of 2-fluoro-4-hydroxybenzonitrile (0.68 g) and DMAP (4dimethylaminopyridine, 0.01 g) in THF (20 ml) was added. The mixture was stirred at room temperature for 24 h and then filtered. Colorless single crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of an ethyl acetate/petroleum ether ($1: 4 \mathrm{v} / \mathrm{v}$) solution over a period of 2 d .

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FNO}_{4}$
$M_{r}=411.46$
Triclinic, $P \overline{1}$
$a=7.763(4) \AA \AA \AA^{\circ}$
$b=11.207(5) \AA$
$c=13.631(7) \AA$
$\alpha=82.499(8){ }^{\circ}$
$\beta=82.269(8)^{\circ}$
$\gamma=75.662(8)^{\circ}$
$V=1132.6(10) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.207 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2069 \\
& \quad \text { reflections } \\
& \theta=2.5-25.9^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Column, colorless } \\
& 0.31 \times 0.30 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.973, T_{\text {max }}=0.988$
5944 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.160$
$S=1.06$
4124 reflections
283 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 4124 \text { independent reflections } \\
& 3035 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.014 \\
& \theta_{\max }=25.5^{\circ} \\
& h=-9 \rightarrow 8 \\
& k=-13 \rightarrow 13 \\
& l=-14 \rightarrow 16 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0764 P)^{2}\right. \\
& \quad+0.2038 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{F}-\mathrm{C} 7$	$1.329(3)$	$\mathrm{O} 3-\mathrm{C} 17$	$1.423(2)$
$\mathrm{F}^{\prime}-\mathrm{C} 3$	$1.291(5)$	$\mathrm{O} 4-\mathrm{C} 14$	$1.366(2)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.369(2)$	$\mathrm{O} 4-\mathrm{C} 18$	$1.439(2)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.393(2)$	$\mathrm{N}-\mathrm{C} 1$	$1.144(3)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.193(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.457(3)$
$\mathrm{O} 3-\mathrm{C} 13$	$1.365(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.332(3)$

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.58	$3.509(3)$	177
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1$	0.93	2.35	$2.730(3)$	104
$\mathrm{C} 17-\mathrm{H} 17 B \cdots \mathrm{~F}^{\mathrm{ii}}$	0.96	2.51	$3.211(4)$	130

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x-1, y, z+1$.

All H atoms except H3 and H7 were located in difference Fourier maps and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in Universities (No. NCET-040649) and the Project of Educational Administration of Shandong Province (No. J04B12).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ren, R., Li. Q., Zhang, S.-S. \& Li, X.-M. (2005). Acta Cryst. E61, o3472-o3473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography

